Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Clin Immunol ; 42(6): 1111-1129, 2022 08.
Article in English | MEDLINE | ID: covidwho-1942304

ABSTRACT

PURPOSE: Six to 19% of critically ill COVID-19 patients display circulating auto-antibodies against type I interferons (IFN-AABs). Here, we establish a clinically applicable strategy for early identification of IFN-AAB-positive patients for potential subsequent clinical interventions. METHODS: We analyzed sera of 430 COVID-19 patients from four hospitals for presence of IFN-AABs by ELISA. Binding specificity and neutralizing activity were evaluated via competition assay and virus-infection-based neutralization assay. We defined clinical parameters associated with IFN-AAB positivity. In a subgroup of critically ill patients, we analyzed effects of therapeutic plasma exchange (TPE) on the levels of IFN-AABs, SARS-CoV-2 antibodies and clinical outcome. RESULTS: The prevalence of neutralizing AABs to IFN-α and IFN-ω in COVID-19 patients from all cohorts was 4.2% (18/430), while being undetectable in an uninfected control cohort. Neutralizing IFN-AABs were detectable exclusively in critically affected (max. WHO score 6-8), predominantly male (83%) patients (7.6%, 18/237 for IFN-α-AABs and 4.6%, 11/237 for IFN-ω-AABs in 237 patients with critical COVID-19). IFN-AABs were present early post-symptom onset and at the peak of disease. Fever and oxygen requirement at hospital admission co-presented with neutralizing IFN-AAB positivity. IFN-AABs were associated with lower probability of survival (7.7% versus 80.9% in patients without IFN-AABs). TPE reduced levels of IFN-AABs in three of five patients and may increase survival of IFN-AAB-positive patients compared to those not undergoing TPE. CONCLUSION: IFN-AABs may serve as early biomarker for the development of severe COVID-19. We propose to implement routine screening of hospitalized COVID-19 patients for rapid identification of patients with IFN-AABs who most likely benefit from specific therapies.


Subject(s)
COVID-19 , Interferon Type I , Antibodies, Neutralizing , Autoantibodies , COVID-19/diagnosis , Critical Illness , Female , Humans , Interferon-alpha/therapeutic use , Male , Oxygen , SARS-CoV-2
2.
Nature ; 600(7888): 295-301, 2021 12.
Article in English | MEDLINE | ID: covidwho-1626235

ABSTRACT

SARS-CoV-2 is a single-stranded RNA virus that causes COVID-19. Given its acute and often self-limiting course, it is likely that components of the innate immune system play a central part in controlling virus replication and determining clinical outcome. Natural killer (NK) cells are innate lymphocytes with notable activity against a broad range of viruses, including RNA viruses1,2. NK cell function may be altered during COVID-19 despite increased representation of NK cells with an activated and adaptive phenotype3,4. Here we show that a decline in viral load in COVID-19 correlates with NK cell status and that NK cells can control SARS-CoV-2 replication by recognizing infected target cells. In severe COVID-19, NK cells show defects in virus control, cytokine production and cell-mediated cytotoxicity despite high expression of cytotoxic effector molecules. Single-cell RNA sequencing of NK cells over the time course of the COVID-19 disease spectrum reveals a distinct gene expression signature. Transcriptional networks of interferon-driven NK cell activation are superimposed by a dominant transforming growth factor-ß (TGFß) response signature, with reduced expression of genes related to cell-cell adhesion, granule exocytosis and cell-mediated cytotoxicity. In severe COVID-19, serum levels of TGFß peak during the first two weeks of infection, and serum obtained from these patients severely inhibits NK cell function in a TGFß-dependent manner. Our data reveal that an untimely production of TGFß is a hallmark of severe COVID-19 and may inhibit NK cell function and early control of the virus.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Transforming Growth Factor beta/immunology , Atlases as Topic , Gene Expression Regulation/immunology , Humans , Immunity, Innate , Influenza, Human/immunology , Killer Cells, Natural/pathology , RNA-Seq , Single-Cell Analysis , Time Factors , Transforming Growth Factor beta/blood , Viral Load/immunology , Virus Replication/immunology
3.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1311204

ABSTRACT

Autoantibodies against IFN-α and IFN-ω (type I IFNs) were recently reported as causative for severe COVID-19 in the general population. Autoantibodies against IFN-α and IFN-ω are present in almost all patients with autoimmune polyendocrine syndrome type 1 (APS-1) caused by biallelic deleterious or heterozygous dominant mutations in AIRE. We therefore hypothesized that autoantibodies against type I IFNs also predispose patients with APS-1 to severe COVID-19. We prospectively studied 6 patients with APS-1 between April 1, 2020 and April 1, 2021. Biobanked pre-COVID-19 sera of APS-1 subjects were tested for neutralizing autoantibodies against IFN-α and IFN-ω. The ability of the patients' sera to block recombinant human IFN-α and IFN-ω was assessed by assays quantifying phosphorylation of signal transducer and activator of transcription 1 (STAT1) as well as infection-based IFN-neutralization assays. We describe 4 patients with APS-1 and preexisting high titers of neutralizing autoantibodies against IFN-α and IFN-ω who contracted SARS-CoV-2, yet developed only mild symptoms of COVID-19. None of the patients developed dyspnea, oxygen requirement, or high temperature. All infected patients with APS-1 were females and younger than 26 years of age. Clinical penetrance of neutralizing autoantibodies against type I IFNs for severe COVID-19 is not complete.


Subject(s)
Autoantibodies/immunology , COVID-19/complications , COVID-19/immunology , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Polyendocrinopathies, Autoimmune/complications , Polyendocrinopathies, Autoimmune/immunology , SARS-CoV-2 , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Autoantibodies/blood , Female , Humans , In Vitro Techniques , Interferon-alpha/antagonists & inhibitors , Interferon-alpha/immunology , Male , Polyendocrinopathies, Autoimmune/genetics , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Severity of Illness Index , Transcription Factors/genetics , Virus Replication/immunology , Young Adult
4.
Transplantation ; 105(10): 2156-2164, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1228581

ABSTRACT

BACKGROUND: The ability of transplant (Tx) patients to generate a protective antiviral response under immunosuppression is pivotal in COVID-19 infection. However, analysis of immunity against SARS-CoV-2 is currently lacking. METHODS: Here, we analyzed T cell immunity directed against SARS-CoV-2 spike-, membrane-, and nucleocapsid-protein by flow cytometry and spike-specific neutralizing antibodies in 10 Tx in comparison to 26 nonimmunosuppressed (non-Tx) COVID-19 patients. RESULTS: Tx patients (7 renal, 1 lung, and 2 combined pancreas-kidney Txs) were recruited in this study during the acute phase of COVID-19 with a median time after SARS-CoV-2-positivity of 3 and 4 d for non-Tx and Tx patients, respectively. Despite immunosuppression, we detected antiviral CD4+ T cell-response in 90% of Tx patients. SARS-CoV-2-reactive CD4+ T cells produced multiple proinflammatory cytokines, indicating their potential protective capacity. Neutralizing antibody titers did not differ between groups. SARS-CoV-2-reactive CD8+ T cells targeting membrane- and spike-protein were lower in Tx patients, albeit without statistical significance. However, frequencies of anti-nucleocapsid-protein-reactive, and anti-SARS-CoV-2 polyfunctional CD8+ T cells, were similar between patient cohorts. Tx patients showed features of a prematurely aged adaptive immune system, but equal frequencies of SARS-CoV-2-reactive memory T cells. CONCLUSIONS: In conclusion, a polyfunctional T cell immunity directed against SARS-CoV-2 proteins as well as neutralizing antibodies can be generated in Tx patients despite immunosuppression. In comparison to nonimmunosuppressed patients, no differences in humoral and cellular antiviral-immunity were found. Our data presenting the ability to generate SARS-CoV-2-specific immunity in immunosuppressed patients have implications for the handling of SARS-CoV-2-infected Tx patients and raise hopes for effective vaccination in this cohort.


Subject(s)
COVID-19/immunology , Immunosuppression Therapy , Organ Transplantation , SARS-CoV-2/immunology , Adult , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunologic Memory , Male , Middle Aged , T-Lymphocytes/immunology
5.
Mol Ther ; 28(12): 2691-2702, 2020 12 02.
Article in English | MEDLINE | ID: covidwho-927132

ABSTRACT

Preventing the progression to acute respiratory distress syndrome (ARDS) in COVID-19 is an unsolved challenge. The involvement of T cell immunity in this exacerbation remains unclear. To identify predictive markers of COVID-19 progress and outcome, we analyzed peripheral blood of 10 COVID-19-associated ARDS patients and 35 mild/moderate COVID-19 patients, not requiring intensive care. Using multi-parametric flow cytometry, we compared quantitative, phenotypic, and functional characteristics of circulating bulk immune cells, as well as SARS-CoV-2 S-protein-reactive T cells between the two groups. ARDS patients demonstrated significantly higher S-protein-reactive CD4+ and CD8+ T cells compared to non-ARDS patients. Of interest, comparison of circulating bulk T cells in ARDS patients to non-ARDS patients demonstrated decreased frequencies of CD4+ and CD8+ T cell subsets, with activated memory/effector T cells expressing tissue migration molecule CD11a++. Importantly, survival from ARDS (4/10) was accompanied by a recovery of the CD11a++ T cell subsets in peripheral blood. Conclusively, data on S-protein-reactive polyfunctional T cells indicate the ability of ARDS patients to generate antiviral protection. Furthermore, decreased frequencies of activated memory/effector T cells expressing tissue migratory molecule CD11a++ observed in circulation of ARDS patients might suggest their involvement in ARDS development and propose the CD11a-based immune signature as a possible prognostic marker.


Subject(s)
COVID-19/immunology , Immunologic Memory/immunology , Pandemics , Respiratory Distress Syndrome/immunology , Adult , Aged , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/virology , Female , Humans , Male , Membrane Glycoproteins/immunology , Middle Aged , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , T-Lymphocyte Subsets/immunology
SELECTION OF CITATIONS
SEARCH DETAIL